If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7-49x^2=0
a = -49; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-49)·7
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*-49}=\frac{0-14\sqrt{7}}{-98} =-\frac{14\sqrt{7}}{-98} =-\frac{\sqrt{7}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*-49}=\frac{0+14\sqrt{7}}{-98} =\frac{14\sqrt{7}}{-98} =\frac{\sqrt{7}}{-7} $
| 5(3x+9)=-17+47 | | 3b-16=8b-6(b+1) | | p=15+55/33(100) | | 12x=6=12 | | 7+49x^2=0 | | r^2-r+20=0 | | 2x+10=4x-7+9 | | (2x+1)=14x+8+2x | | 2x+20=x+5 | | 7x+18=6x+1 | | d^2–12d+11=0 | | 6x-48=-8 | | 7/8x^2-1=0 | | 2z-18=2z-3 | | 3=3x+6(-x+3) | | -5x+6=3(-2x-4) | | 4x+15=-15 | | 3(4x-6)=26 | | 1-3/4(u+2)=-5/2 | | 9x-7-5x=13 | | 2(2(2(2x-100)-100)-100)-100=0 | | 3x+42=-7 | | 12/(x+100000)*100000=3 | | 2106/27=n | | 11x=14x+28 | | 6x-5=2(x-4 | | 4y*2=11y | | F(x)=x-36 | | 4(x*2-7/4)=2 | | 10x2-23x=5 | | 5/8x-27=-14 | | 2/5(x-10)+2=11/5 |